If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2-16c+48=0
a = 1; b = -16; c = +48;
Δ = b2-4ac
Δ = -162-4·1·48
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8}{2*1}=\frac{8}{2} =4 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8}{2*1}=\frac{24}{2} =12 $
| 5m+4=20 | | 3z2+12z=0 | | x-126=200 | | 1=3u | | 5(d-12)-3=2(-4d=94)+87 | | -10=5/3r+5 | | 45×n=405 | | 60+w=2,400 | | 4x-6+3x-4=90 | | 4x-6+3x-4=180 | | 65-x=0.32x | | *9x-7=-43 | | 10+4x=(x-6)-33 | | 72x-17x=72 | | -x+63=3x+27 | | x-45/8=0 | | 3/2=1.8/m | | 12/3x-4=21/2-x | | -x^2=-80 | | x(2x+8)=192 | | 4^2x-7=256 | | x-12=-79 | | 15x^2-2x-45=0 | | -2(x+3)+3(x+2=16) | | (5x+25)/18=5 | | -2(x+3)+3(x+2)=16 | | 20+8z-7z=30 | | 7=1/3f | | 3x2−18x+12=0 | | -2=-3(5+y)-14 | | 18x^2-30=12x | | 86=7q+4q-2 |